首页 大盘指数 指数运算[指数计算是什么呢?]

指数运算[指数计算是什么呢?]

大家好股票行情网来介绍今日股市热点,以下是小编对指数运算的公式有哪些?的详细介绍,来看看吧!

文章目录列表:

指数怎么运算啊?

一、对数的运算法则:

1、log(a) (M·N)=log(a) M+log(a) N

2、log(a) (M÷N)=log(a) M-log(a) N

3、log(a) M^n=nlog(a) M

4、log(a)b*log(b)a=1

5、log(a) b=log (c) b÷log (c) a

二、指数的运算法则:

1、[a^m]×[a^n]=a^(m+n)

2、[a^m]÷[a^n]=a^(m-n)

3、[a^m]^n=a^(mn)

4、[ab]^m=(a^m)×(a^m)

记忆口决:

有理数的指数幂,运算法则要记住。

指数加减底不变,同底数幂相乘除。

指数相乘底不变,幂的乘方要清楚。

积商乘方原指数,换底乘方再乘除。

非零数的零次幂,常值为 1不糊涂。

负整数的指数幂,指数转正求倒数。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

扩展资料

指数的相关历史:

1607 年,利玛窦和徐光启合译欧几里得的 《几何原本》,在译本中徐光启重新使用了幂字,并有注解:“自乘

之数曰幂。”这是第一次给幂这个概念下定义。

至十七世纪,具有“现代”意义的指数符号才出现。最初的,只是表示未知数之次数,但并无出现未知量符号。比尔吉则把罗马数字写于系数数字之上,以表示未知量次数。

其后,开普勒等亦采用了这符号。罗曼斯开始写出未知量的字母。1631 年,哈里奥特( 1560-1621) 改进了韦达的记法,以 aa表示q^2 , 以aaa 表示q^3。

1636 年,居于巴黎的苏格兰人休姆( James Hume) 以小罗马数字放于字母之右上角的方式表达指数,该表示方式除了用的是罗马数字外,已与现在的指数表示法相同。笛卡儿( 1596-1650) 以较小的印度阿拉伯数字放于右上角来表示指数,是现今通用的指数表示法。

指数运算的公式有哪些?

1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。

2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。

3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。

4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。

基本的函数的导数:

1、y=a^x,y'=a^xlna。

2、y=c(c为常数),y'=0。

3、y=x^n,y'=nx^(n-1)。

4、y=e^x,y'=e^x。

5、y=logax(a为底数,x为真数),y'=1/x*lna。

6、y=lnx,y'=1/x。

7、y=sinx,y'=cosx。

8、y=cosx,y'=-sinx。

9、y=tanx,y'=1/cos^2x。

记忆口诀

有理数的指数幂,运算法则要记住。

指数加减底不变,同底数幂相乘除。

指数相乘底不变,幂的乘方要清楚。

积商乘方原指数,换底乘方再乘除。

非零数的零次幂,常值为1不糊涂。

负整数的指数幂,指数转正求倒数。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

来源:-指数运算法则

指数计算是什么呢?

指数的运算方法:

1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。

2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。

3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。

4、积的乘方,等于每一个因式分别乘方。

指数运算法则:

乘法:

1、同底数幂相乘,底数不变,指数相加。

2、幂的乘方,底数不变,指数相乘。

3、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

4、分式乘方,分子分母各自乘方。

除法:

1、同底数幂相除,底数不变,指数相减。

2、规定:任何不等于零的数的零次幂都等于1。任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。

以上就是今日股市热点问题指数怎么运算啊?的解答了,希望对你有用,关注“股票行情网”加个鸡腿吧!

热门文章

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注

//其中.article-content img,要获取到图片所在div